

Activity 8: Energy transfer. How far does chocolate get you?

Learning intentions

For Year 9-10 students: Students will learn that for energy to do work it needs to transform from one form to another and this is what we can measure and use to predict the behaviour of a system. Students will use their understanding of force and work to use the potential energy in a chocolate bar to calculate the work that can be done by eating that chocolate bar – it is a lot.

Materials

• Imagination – and possibly the desire to test some of the math out in real life such as eating a chocolate bar and testing the accuracy of their calculations.

Teacher Notes	Teaching Notes: Running the activity
Forms of energy	Method
The two main forms of energy are potential and	Question 1. Activity (Year 9-10)
kinetic and each have different types. Others	The human body is inefficient at converting
energy forms include light, sound and thermal	the energy in food into work. For example,
energy. See Activity 4 for an exploration of kinetic	if we use 100 joules of energy to swing an
energy. For an in-depth- look at light, See FLEET	axe to chop firewood, only about 25% of
Schools teacher resource, Light: reflection,	that energy (25 joules) will be used by the
refraction, diffraction	muscles (kinetic energy) to do the work of
	chopping wood. The other 75% (75 joules)
Question 4. How much work in a chocolate bar?	is transformed to heat energy, which in the
Worked example. We will use our 100g serve of	context of the work we want to do is
dairy milk chocolate with 2250 Kilojoules (2.25×10 ⁶	wasted energy because it is not being used
joules).	by the body's muscles to do work of
	chopping wood.
Remember 1 joule = 1 Newton metre (NM) of work	
	Let's apply this to eating a chocolate bar
We know Work (W) is 2,250,000 joules and the	and calculate how much work we can do
force (F) is 400N	with the energy in the chocolate.
Therefore	Select your favourite chocolate or museli
d = 2,250,000/400	bar and find out how many kilojoules it
= 5625 metres (or 5.625 kilometres – a long way)	contains (a Internet search will find the
	company and product with the nutrition
But we know that all the energy from the chocolate	information).
is not being used to apply the force to the box and	
move it. Remember that the human body is only	For example, a 100g serve of dairy milk
about 25% efficient at transferring stored energy	chocolate has 2250 Kilojoules (or 2,250,000
from the chocolate (or any food) into work useful	joules – or 2.25×10 ⁶ joules).

to us, in this case making our muscles push the box. Therefore, only 562,500 joules will be used to actually push the box. The rest will be lost as heat. This means you only need to push that box 1,406 metres.	Task: Work out how far you need to push the box of toys/sport gear from Activity 2 to burn off the energy (kilojoules) in your selected chocolate bar.
5625/4 = 1406 metres (still a long way)	To determine the distance we need to push the box, we use the equation, $W = F \times d$
The apple versus the lump of energy dense chocolate.	And therefore, to know the distance we need to push the box: d = W/F
A 100 grams of apple contain about 230 kilojoules (or 230,000 Joules).	We all have different bodies that burn
Distance = 230,000/400 = 575 metres	energy (joules) at different rates, and the amount of Force (N) that a person can apply will also differ, but let us assume we
575 metres $/4 = 143.75$ metres	all burn energy at the same rate and a student will apply 400 Newtons of force to
(Barely raise a sweat)	get the box moving. (We added more weight to this box so it requires a lot more
Discussion point Another way of thinking about work and energy is	force to move it.)
that work is equal to the amount of energy	What about the healthier alternative, an
transferred between objects (e.g., between you	apple, which contain about 230 kilojoules
and your box of toys/sport gear, which moved from	for 100 grams of apple? Work out how far
your floor to under your bed). This can be	you need to push the box to burn off the
expressed as W(work) = ΔE , where ΔE is the change in or amount of energy transferred.	energy in an apple.
	For a bit of fun
	Roughly how far do you have to jog to burn
	off the energy in one jelly baby?
	A. 3 metres B. 30 metres C. 300 metres
	Check out the answer to this National
	Science Quiz question that FLEET was a
	partner in producing.
	Background: Jelly babies, those small, chewy lollies in the shape of a baby, seem to have been accidentally invented in England in 1864, when the inventor was

GFLEET ARC CENTRE OF EXCELLENCE IN FUTURE LOW-ENERGY ELECTRONICS TECHNOLOGIES	
	trying to make bear-shaped lollies. Instead of bears, he got lollies that looked like babies. Originally, they were sold under the gruesome name "Unclaimed babies", but that name apparently didn't last long and they were called "jelly babies" soon afterwards. They were the favourite lolly of George Harrison (The Beatles) and Dr. Who.
	Discussion point: Discuss what you have noticed or learned about the relationship between work and energy.