

Activity 5: Kinetic energy. Math and relationships

Learning intentions

Students will learn what kinetic energy is and the mathematical relationships that describe it.

Materials

Imagination and problem solving •

Teacher Notes	Student activities
This Activity sheet contains thinking-based activities for	Question 1: Let's take two skateboarders that
different year levels, so you can be selective in what you	each weigh 70kg (mass). And this time they are
choose to do. See Activity 5, 6 and 7 for some hands on-	on electric-powered skateboards. One travels
experiments that enable students to test out the	at 20km/hour; the other at 40km/hour. Which
ideas/concepts explored in this Activity.	skateboarder will have the most kinetic
	energy? Try to explain your answer.
Forms of energy	
The two main forms of energy are potential and kinetic	For year 7-9
and each have different types. Others energy forms	Calculate the kinetic energy of each
include light, sound and thermal energy. See Activity 4	skateboarder using our understanding of the
for an exploration of potential energy. For an in-depth-	relationship, Kinetic energy = ½mv ²
look at light, See FLEET Schools teacher resource, <u>Light:</u>	Where m=mass and v=velocity (m/sec).
reflection, refraction, diffraction	
	Let us look at Question 1 again, this time we
Kinetic energy: Kinetic energy is movement, or the	will use the above relationship to quantify the
energy of a moving object. To get an object to move we	answer.
must apply a force. The amount of kinetic energy	
something has is dependent on its mass and velocity	Consider our above two skateboarders again
(how fast it is moving). The greater the mass and	that each weigh 70kg (mass). One travels at
velocity, the greater the kinetic energy. If something is	20km/hour; the other at 40km/hour. Use the
not moving then it has no kinetic energy (but it will have	relationship, Kinetic energy = $\frac{1}{2}mv^2$ to
potential energy).	determine the kinetic energy (joules) of each
	skateboarder. What did doubling the velocity of
We can express this relationship between energy, mass	the skateboarder do to the amount of kinetic
and velocity mathematically:	energy?
Kinetic energy = $\frac{1}{2}$ mv ²	
Where m=mass (kilograms) and v=velocity (m/sec).	Here is something to consider when students
	get their driver's licence. Which car will be
For example, if your speed (velocity) doubles, your	harder to stop (using the car's brakes). A car
kinetic energy will increase four-fold; if your speed	weighing 1 ton travelling at a speed of
increases five-fold, your kinetic energy will increase by a factor of 25.	100km/hour and carrying nothing except the
	driver, or the same car (and driver) travelling at the same speed, but with 1 ton of bricks in the
Mass also affects kinetic energy. What would happen to	back?
the amount of kinetic energy if you doubled only the	
the amount of kinetic energy if you doubled only the	

mass (speed stays the same)? Answer: you would double the kinetic energy Students can check all this for themselves. Plug in some numbers to the equation (relationship) and see what happens to kinetic energy when you double the mass, or velocity. Speed, mass, energyDoes this sound familiar? See below.	For years 7-9 Calculate the kinetic of each vehicle. How did the level of kinetic energy change? What do you need to consider to make sure you stop in time? How does this compare to the kinetic energy with the skateboarders where you only changed the velocity? What can you say about the relationship of mass and kinetic energy?
Answers to Question 1. For the skateboarders, hopefully students will intuitively understand that if you go faster or have more mass you will have more kinetic energy.	Question 2. Question: What other famous equation describes a relationship between energy, mass and speed? (Hint, he is a Nobel prize winner where the speed refers to the speed of light.)
Quantification Effect of change in velocity Skateborder 1 travelling at 20km/hour (remember to convert units) KE = ½ 70 × 5.56m/sec ² KE= 35 × 30.9m/sec KE= 1081.5 joules	
Skateboarder travelling at 40km/hour KE = ½ 70 × 11.12m/sec ² KE= 35 × 123.5m/sec KE= 4320.1 joules (Or 4 times more energy than when travelling at half the speed.)	
Effect of changing mass Ute without bricks KE = ½ 1000kg × 27.7778m/sec ² KE = 500kg × 771.6 m/sec KE = 385,802.5 Joules	
Ute with bricks KE = ½ 2000kg × 2.77778m/sec ² KE = 1000kg × 7.716 m/sec KE = 771605 Joules (or double the energy of the ute without bricks – half the mass)	
Question 2. Question: What other famous equation describes a relationship between energy, mass and speed?	

[E=mc ²]. Way back in 1907, Einstein developed the now	
famous equation to describe the relationship between	
energy, mass and light, which has changed how we think	
of energy and inertia. We will examine this and another	
not so famous equation in Activity 10.	
Simulation	
Check the Phet simulations and specficially the Skate	
Park demo that measures kinetic and potential energy	
and includes the effects of mass and friction.	
https://phet.colorado.edu/sims/html/energy-skate-	
park/latest/energy-skate-park_en.html	