

Activity 4: Potential energy

Learning intentions

Students will learn what potential energy is and how to calculate how much potential energy something has – and how much potential work you can do with that energy.

Materials

Imagination - and possibly the desire to get out a skateboard and design an experiment to • test the math.

Teacher Notes	Teaching Notes: Running the activity	
This Activity sheet contains a mix of activities with	Method	
one activity targeted at year 7-9, depending on	Question 1. Before applying the math, get	
their ability.	students to develop a hypothesis	
	(prediction) for the following question:	
Forms of energy		
The two main forms of energy are potential and	Does a skateboarder stationary at the top	
kinetic and each have different types. Others	of a high ramp have more or less potential	
energy forms include light, sound and thermal	gravitational energy than a skateboarder	
energy. See Activity 5 for an exploration of kinetic	stationary on a lower ramp?	
energy. For an in-depth- look at light, See FLEET		
Schools teacher resource, Light: reflection,	Question 2. Another example is holding a	
refraction, diffraction	heavy weight above your head. The weight	
	has potential gravitational energy. This is	
Potential energy: This is the energy associated with	potentially dangerous, but if you want to	
either the position of an object and the forces being	express your concern and sound smart (or	
exerted on it (e.g., a skateboarder stationary at the	annoying) you could tell the person holding	
top of a ramp where the force acting on the	the weight above their head that you are	
skateboarder is gravity), or its structure (e.g., the	worried about the potential gravitational	
chemical bonds in different molecules). The many	energy above them transforming into	
types of potential energy include gravitational,	kinetic energy (more about transfer of	
chemical and elastic. Each can be defined in	energy later).	
different ways. Collectively, however, potential		
energy represents the potential that something has	What could you suggest to the person	
to do work.	holding the weight above their head to	
	reduce the potential gravitational energy	
The skateboarder positioned at the top of the ramp	and the risk of serious injury?	
(stationary) has potential gravitational energy.		
When they lean forward, however, and start	Test your answer to the above questions	
hurtling down the ramp, that potential energy is	with some math.	
transformed into kinetic energy – movement.		

Question 1. Answer (non-math version): The higher the ramp they start from, the more potential gravitational energy a skateboarder will have, and therefore the more kinetic energy they have once they start moving downward. Question 2. What could you suggest to the person holding the weight above their head to reduce the gravitational potential energy?	Question 3. We can calculate the potential gravitational energy of someone or something if we know the force of gravity, its mass and its height above the ground. Here we are talking about skateboarders at the top of a 10 metre ramp. We weigh the skateboarder and they weigh 70kg. We know the force of gravity for our purposes is 10 m/sec ²
Answer: lower the weight so that it is closer to your	Coloulate the notantial energy of the
Alternatively, they could reduce the mass of the	skateboarder at the top of the ramp?
weight.	
Math: Potential energy (PE)= Gravitational force × height.	What if there was a second skateboarder hanging at the top of the 10 metre ramp that weighed 50kg? Which skateboarder has the greatest potential energy? Use the
And the units for energy = Joules	mathematical relationship to work it out.
Question 3. Skateboarder potential energy = Gravitational force × height We know the height of the ramp is 10 metres The gravitational force = mass × gravity, and gravity we know on Earth =9.8 metres / s ² – or how fast you fall.	What if the skateboarders took their ramp to the moon where there is less gravity (gravitational force is lower)? Compared to their ramp on Earth, would they have more or less potential energy at the top of their moon ramp?
[Note: make sure you have your units correct: where m is the mass in kilograms, g is the acceleration due to gravity (9.8 m / s^2 at the surface of the earth) and h is the height in meters.]	
For simplicity here, let us call gravity 10m / sec ²	
Therefore, we can calculate the potential energy of the skateboarder as follows Potential (gravitational) energy = Force of gravity (10m/sec ²) × mass × height	
Skateboarder 70kg	

Potential Energy (Joules) = 10m/sec ² × 70kg × 10 metres = 7000 Joules (J)	
Skateboarder 50kg Potential Energy (Joules) = 10m/sec ² × 50kg × 10 metres = 5000 Joules (J)	
And if the skateboarders took their ramp to the moon, they would have less potential energy at any position on ramp because gravity, which applies a downward force, is reduced.	