DELEGATE HANDBOOK

10-13 December 2018

4TH INTERNATIONAL CONFERENCE ON TWO-DIMENSIONAL MATERIALS AND TECHNOLOGIES

ICON-2DMAT 2018

MELBOURNE CONVENTION & EXHIBITION CENTRE, MELBOURNE AUSTRALIA

fleet.org.au/icon2dmat

Contents

Committee and Support Staff	3
Welcome	4
Host City and Accommodation	5
Conference Venue	5
General Information	8
Social Functions	10
Plenary Speakers	18
Editorial Panelists	20
Keynote Speakers	21
Program	26
Posters	31
Supporters	34
Exhibitors	34
Abstracts Tuesday	35
Abstracts Wednesday	72
Abstracts Thursday	141
Abstracts Posters	205

Committee and Support Staff

Local Organising Committee

Michael Fuhrer (Chair), FLEET Director, Monash University Dan Li (Chair), University of Melbourne Qiaoliang Bao (Co-Chair), Monash University Min Gu (Co-Chair), RMIT University Tich-Lam Nguyen (Conference Secretariat), Chief Operating Officer, FLEET

Topic Chairs

1. Controllable synthesis, characterisation and modelling of 2D materials & structures

Torben Daeneke, RMIT University Wencai Ren, Chinese Academy of Sciences Yanfeng Zhang, Peking University Yi Du, University of Wollongong

2. Physical properties (electronic, optical, thermal and magnetic properties, etc.) of 2D materials (graphene, TMDCs, black phorphorous, topological insulators, perovskites, MXenes, etc.)

Antonija Grubisic-Cabo, Monash University Bent Weber, Nanyang Technological University Singapore Lan Wang, RMIT University Jeff Davis, Swinburne University of Technology Semonti Bhattacharyya, Monash University

3. Chemistry of 2D materials and applications (energy, environment, catalysis, bio-medical, etc.)

Jie Zhang, Monash University Xiaowei Yang, Tongji University Zongyou Yin, Australian National University Xiaoqiang Cui, Jilin University

4. Device application in electronics, photonics and optoelectronics

Francesca Iacopi, University of Technology Sydney LeiLiao, Hunan University Yuerui Lu, Australian National University Jun He, National Centre for Nanoscience and Technology Barbaros Ozyilmaz, National University of Singapore

Conference Office

WALDRONSMITH Management 119 Buckhurst Street South Melbourne VIC 3205 Australia T +61 3 9645 6311 F +61 3 9645 6322 E icon2dmat@wsm.com.au

Welcome

First time in Australia, the **4**th **International Conference on 2D Materials and Technologies** (ICON-2DMAT 2018) is a great opportunity for Australian and international scientists to discuss latest progress in two-dimensional materials research and their applications.

This 4th meeting reflects the rapidly growing field of 2D materials, covering graphene, transition metal dichalcogenides, black phosphorus, topological insulators, perovskites, MX3 and other new forms of 2D materials. We also look forward to hearing recent developments of 2D materials in electronics, photonics, optoelectronics, catalysis, bio-medical, environmental and energy applications.

Through the success of previous 2017 meeting in Singapore, ICON-2DMat 2018 expects the participation of approximately 300 scientists working on developing 2D materials and technologies for optoelectronics, energy, biomedical and environmental applications.

The conference offers your organisation a valuable opportunity for one-to-one interaction with scientists from around the world. We welcome your participation at this important conference and we do hope you'll join us.

Kind regards,

Conference Chairs

MICHAEL FUHRER Co-Chair Monash University

DAN LI Co-Chair University of Melbourne

QIAOLIANG BAO Co-Chair Monash University

MIN GU Co-Chair RMIT University

Host City

Melbourne is a lively, sophisticated city packed with shops, restaurants, bars and cafes in wide, leafy boulevards and tiny, atmospheric laneways that beckon to be explored. Despite its temperate climate, safe streets, cosmopolitan lifestyle and beautiful setting, locals remain low-key about their city. They know that Melbourne is Australia's undisputed event, sport, culture and food capital; a city with a European approach to style and a lifestyle that puts it in the fast lane. It's a sophisticated mix of style, warmth and Australian informality and you won't find it in any other place. This city practically breathes the good life. Believe it. When you see it – you'll think the world of Melbourne.

Accommodation

Adina Apartment Hotel, Northbank 550 Flinders Street Melbourne T: + 61 3 9246 0000

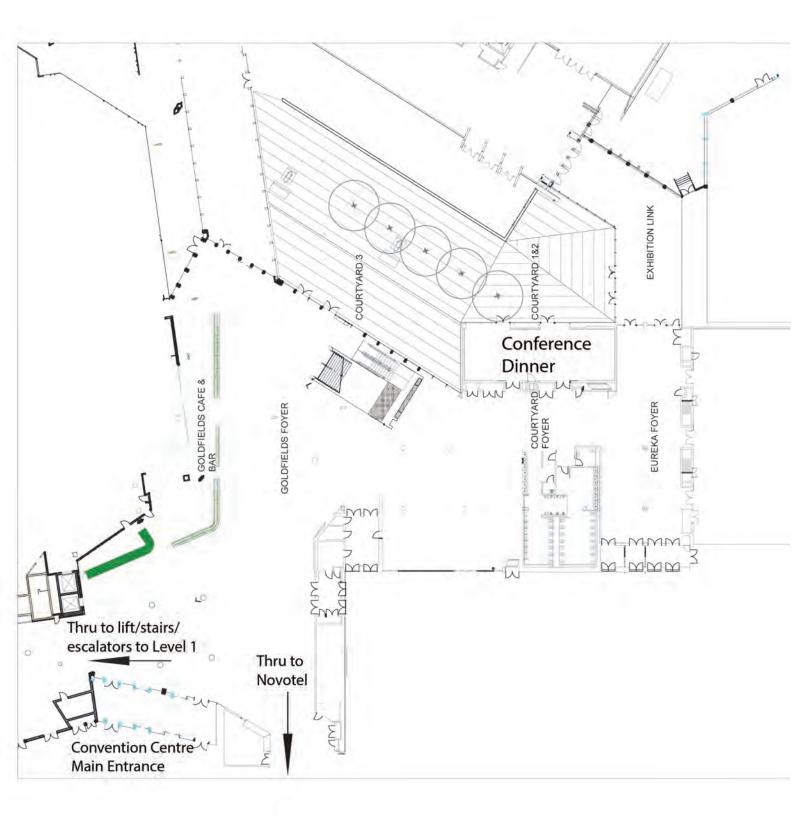
Crown Metropol 8 Whiteman Street Southbank T: + 61 3 9292 8888

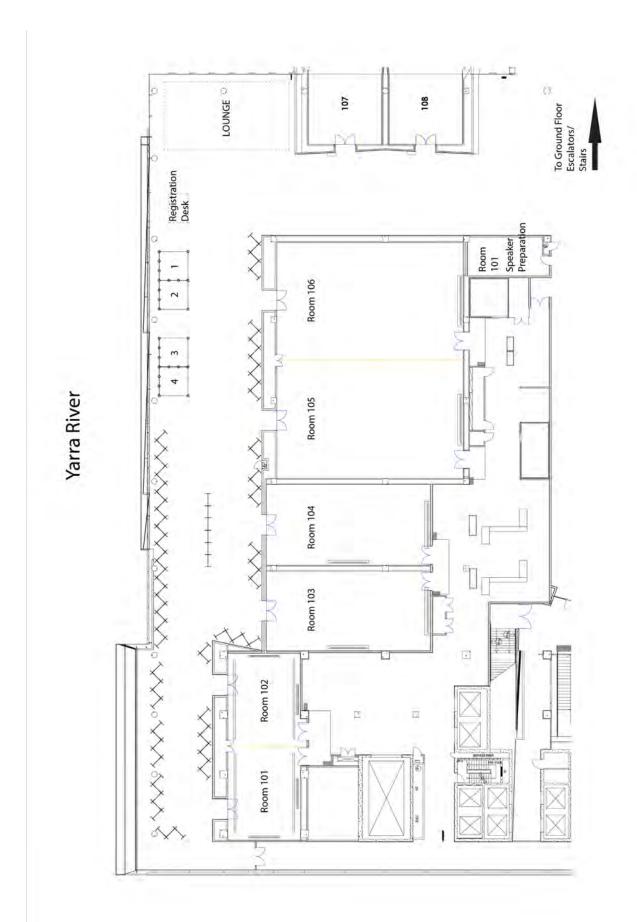
Crown Promenade 8 Whiteman Street Southbank T: + 61 3 9292 8888

Crowne Plaza Melbourne 1-5 Spencer Street Melbourne T: + 61 3 9648 2777 Novotel South Wharf 7 Convention Centre Place South Wharf T: + 61 3 9058 0444

Pan Pacific South Wharf 2 Convention Centre Place South Wharf T: + 61 3 9027 2000

Travelodge Southbank 9 Riverside Quay Southbank T: + 61 3 8696 9600


Conference Venue


Melbourne Convention and Exhibition Centre 1 Convention Centre Place South Wharf VIC 3006 T +61 3 9235 8000

The Melbourne Convention and Exhibition centre is Australia's largest and most versatile convention and exhibition facility. It is located on the south bank of the Yarra River and is just a 20 minute walk from the city centre. It is surrounded by café's, bars and restaurants and has close access to a number of accommodation venues.

Floor Plan - Ground Floor

Floor Plan - Symposia Rooms

General Information

Childcare

Childcare has been arranged for the Conference but needed to be pre-booked before arriving onsite. Childcare facilities will be held in Rooms 101&102. Childcare is being provided by Crechendo.

Climate

Melbourne has the reputation that its weather can sometimes be a little unpredictable. December heralds the beginning of summer in Melbourne, with the daily temperature averaging 24°C (75°F). For more information, we recommend you check the Bureau of Meteorology website before travelling (www.bom.gov.au).

Daily Catering

Daily morning and afternoon teas, and lunches will be served in the Level 1 Foyer of the Melbourne Convention and Exhibition Centre.

Delegate List

A copy of the delegate list has been emailed to delegates prior to the Conference in the pre-arrival letter. The delegate list contains the name, organisation, state and country of registered delegates, speakers, supporters and exhibitors. Delegates will not appear on the list if they have elected to withhold their information.

Dietary Requirements

Every effort has been made to cater for delegates who have specified dietary requirements at the time of registering. Please make yourself known to a venue staff member at catering times and functions in order to obtain your meal. If you did not provide this information at the time of registering, please advise the staff at the Registration and Information Desk immediately.

Disclaimer

The ICON-2DMat 2018 Organising Committee including the Conference organisers will not accept liability for damages of any nature sustained by participants or their accompanying persons, for loss or damage to their personal property as a result of the ICON-2DMat 2018 Conference and exhibition or related events.

Insurance

Delegates are strongly advised to secure appropriate travel and health insurance. Delegate registration fees do not provide any such insurance coverage. The Organising Committee and the Conference Office accept no responsibility for any loss in this regard.

Internet Access (WiFi)

Internet access is free to all delegates at the Melbourne Convention and Exhibition Centre.

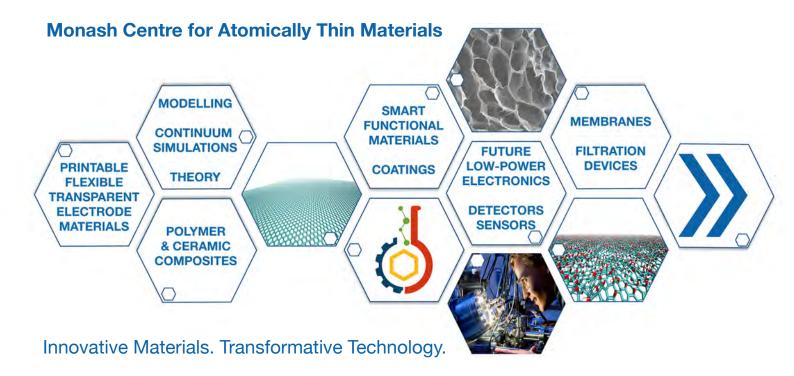
Language

The official language of the Symposium is English.

Name Badge and Lanyard

All delegates will receive a name badge upon registration. This badge is the official pass for the Conference and must be worn to obtain entry to all sessions and social functions.

Privacy Statement


Information requested and provided on the Conference online forms will be used to administer the Conference including accommodation, catering, transport and sponsorship. Data obtained will remain the property of WALDRONSMITH Management and the ICON-2DMat 2018 Conference. For more information on our privacy policy, please visit www.waldronsmith.com.au.

Time Zone

Melbourne is on Australian Eastern Standard Time: UTC/GMT +11 hours.

Useful Telephone	Numbers
-------------------------	---------

Airlines		
Jetstar	13 15 38	www.jetstar.com
Qantas	13 13 13	www.qantas.com.au
Tiger Air	1300 174 266	www.tigerairways.com.au
Virgin Australia	13 67 89	www.virginaustralia.com
Car Hire		
Avis	13 63 33	www.avis.com.au
Budget	13 27 27	www.budget.com.au
Europcar	1300 13 13 90	www.europcar.com.au
Hertz	13 30 39	www.hertz.com.au
Redspot	1300 66 88 10	www.redspot.com.au
Thrifty	1300 36 72 27	www.thrifty.com.au
Тахі		
13 Cabs	13 22 27	www.13cabs.com.au
Silver Top Taxis	131 008	www.silvertop.com.au

OUR CAPABILITIES

26 high profile research groups from **6** schools and departments in **2** faculties: Science and Engineering.

Materials we work with include graphene, transition metal dichalcogenides and topological insulators.

- o Material synthesis and membrane fabrication
- ^o Electronic, electrochemical and optical measurements
- Condensed matter and topological phases
- Microscopy and Spectroscopy characterisations
- Polymer processing facilities
- $_{\scriptscriptstyle 0}$ Atomistic simulation & high performing computing.

ENGAGE WITH US

CRICOS provider: Monash University 000080

We welcome collaboration with research institutions and industries world-wide. Engagement opportunities include:

 $_{\rm o}$ Co-develop, incubate and accelerate next generation two-dimensional materials-based technologies

- R & D project collaboration
- o Technology licensing and commercialisation
- Leverage for external funding sources
- o Access cutting-edge research facilities.

mcatm@monash.edu

An international hub for research excellence in atomically thin materials.

monash.edu/atomically-thin-materials

Social Functions

Welcome Function

Date:Monday 10 December 2018Time:1700 - 1900Venue:Level 1 Foyer, Melbourne Conventionand Exhibition CentreDress:Business attireIncluded in Full Conference Registrations. Additionaltickets can be purchased for \$30 per person.

Poster Session Tuesday

Date:Tuesday 11 December 2018Time:1720 - 1830Venue:Level 1 Foyer, Melbourne Conventionand Exhibition CentreDress:Business attireIncluded in Full Conference Registrations andTuesday (Day) Registrations. Additional tickets notavailable.

Poster Session Wednesday

Date:Wednesday 12 December 2018Time:1720 - 1830Venue:Level 1 Foyer, MelbourneConventionand Exhibition CentreDress:Business attireIncluded in Full Conference Registrations andWednesday (Day) Registrations. Additionaltickets not available.

Conference Dinner

Date:Wednesday 12 December 2018Time:1830 - 2200Venue:Courtyard, Melbourne Convention andExhibition Centre

Dress: Business attire

Additional to Registration Fee. Delegate tickets can be purchased for \$100 per person and guest tickets for \$120 per person.

INNOVATE COLLABORATE ENGAGE

Join us to develop a new generation of ultra-low energy electronics

The ARC Centre of Excellence in Future Low-Energy Electronics Technologies is using novel technologies based on atomically thin materials to reduce the energy used by electronics.

WORK WITH US TO:

- > Perform high impact research
- > Build the future of electronics
- > Train to be a future science leader

WE OFFER:

- > Women in FLEET fellowships with additional research support and mentoring
- Generous top-up scholarships to high performing Higher-Degree-Research students
- Internships and research opportunities with our global partners
- Comprehensive training and mentoring programs

FLEET.org.au

MELBOURNE WELCOMES YOU

Once your conference is done for the day, venture into our hidden spaces and iconic laneways to find an eclectic nightlife, tantalizing food and wine, a dynamic arts scene and more.

If you have time on your hands, Melbourne is the gateway to regional Victoria's stunning coastlines, natural springs, golf courses, spectacular flora and fauna and historic villages.

For more information and ideas, see visitmelbourne.com

As a subsidiary of Visit Victoria, Melbourne Convention Bureau (MCB) leads the acquisition and delivery of national and global business events for Melbourne and regional Victoria. This is achieved through partnering with the Victorian State Government, City of Melbourne, Melbourne Convention and Exhibition Centre, and over 250 private enterprise partners.

1ELBOURNE

Victoria

MCB secures and delivers business events for Melbourne with teams dedicated to business development, bidding and sales, convention servicing, marketing, and partnerships.

With staff and representation in five countires, including the United Kingdom, United States, China, Malaysia and australia, MCB is well placed to support your organisation across the conference journey.

YSL Photonics CO.,Ltd.

📞 +86 27 87204039 🛛 🖂 Sales@yslphotonics.com

www.yslphotonics.com

III APPLICATIONS

- ОСТ
- Fluorescence Spectroscopy&Microscopy
- STED/Super-Resolution Imaging
- Flow Cytometry
- Photoacoustic Microscopy
- Nanophotonics

III FEATURES

- Total Power >20W
- External Triggerable 1-80MHz
- Wavelength 430-2400nm
- Internal Repetition Rate 0.01-200MHz
- Pulse Energy >1.5uJ
- Single-Mode Output

20W Supercontinuum Source

YSL

100W Femtosecond Fiber Laser

APPLICATIONS

- OLED Dicing
- Full Screen Dicing
- Sapphire Drilling&Dicing
- Glass Drilling&Dicing
- Thin Metal Drilling&Dicing
- FPC Drilling&Dicing

III FEATURES

- Average Power 100W
- Pulse Duration ~300fs-10ps
- Peak Power > **500MW**
- Repetition Rate 25-5000KHz
- Pulse Energy >200uJ
- M²<1.3

Vol.1 No.1 Jan.2019

Nano Materials Science

Nano Materials Science is a peer-reviewed, international and interdisciplinary research journal that focuses on nanometer material science and nanometer devices.

Nano Materials Science publishes peer-reviewed original articles and reviews on nanometer material science and nanometer devices, and topics of the articles include preparation and processing, highthroughput characterization, material performance evaluation and application of material genes such as microstructure and properties of one-dimensional, two-dimensional and three-dimensional nanostructured materials and nanofunctional materials; design, preparation and processing techniques, and performance evaluation technology and application of nanometer devices.

The scope of this new journal covers fundamental research on

phenomena, mechanisms and properties of materials at the nanometer scale, and especially focuses on basic research of nano science and application research of frontier technology, involving the latest interdisciplinary research of physics, chemistry, mechanics, thermodynamics, optics, electricity, magnetism and so on at the nanometer scale. This new journal will provide a platform for more exchange among teachers, scientists, and engineering and technical staff in the nano science and technology fields.

Editor-in-Chief

Prof. Jian Lu City University of Hong Kong

Nano Materials Science

Associate Editors

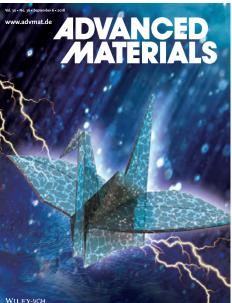
Mahian Omid Alireza, Daining Fang, Shaoyun Fu, Wei Gao, Wanlin Guo, Niels Hansen, Ning Hu, Xiaoxu Huang, Chang Liu, Qi Wang, Weihua Wang, Zidong Wei, Jun Yang, Yuxin Zhang, Ji Zhou

Advisory Board Member

Xiaodong Chen, Huiming Cheng, Dorte Juul Jensen, Yadong Li, Li Lu, Yiu-Wing Mai, Rodney S. Ruoff, Shigang Sun, Lijun Wan, Yueguang Wei, Wei Yang, Tongyi Zhang

中国科技出版传媒股份有限公司 China Science Publishing & Media Ld.(CSPM) 斜 学 出 版 社

Submit your paper to:nanoscience@cqu.edu.cn


http://www.keaipublishing.com/cn/journals/nano-materials-science/ E-mail:nanoscience@cqu.edu.cn Tel:86-23-65112204

Materials Science Matters

New Journals

Leading Journals

www.wileyonlinelibrary.com

Topical Books

www.wiley.com

10-14 February 2019 • Te Papa, Wellington, New Zealand

On behalf of The MacDiarmid Institute for Advanced Materials and Nanotechnology, we would like to warmly invite you to participate at the

9th International Conference on Advanced Materials and Nanotechnology

to be held at the National Museum of New Zealand Te Papa Tongarewa, Wellington 10th - 14th of February 2019

Register Now

(Earlybird rates available until 30 November 2018)

Find out more **www.amn9.co.nz**

1 and

Melbourne Centre for Nanofabrication

hotoliihography | Plasma Ash webox Environments | Deep Remains e g | Scanning Near-Field Opt ^[50,900] | Spectroscopic Ellipsometer | Spin (VD Diamond Growth | Thermal Ever rmal-Scanning Probe Lithography | Z Zetasizer | 3D Printing | RF/DC Spi mic Force Microscopy | Atomic Laye on | Wire bonding | Wafer bonding iond Growth | Dicing | Direct Write |

+100 NANOFAB CAPABILITIES

on Etching | Scanning Near-Field Optical Microscopy | Spectroscopic Ellipsometer | Spin Coating | Therma Etching | Scanning Near-Field Optical Microscopy | Spectroscopic Ellipsometer | Spin Coating | Thermal E topy | Spectroscopic Ellipsometer | Spin Coating | Thermal Evaporation | Thermal-Scanning Probe Lihogra

Probe tillography PROFESSIONAL TRAINING Printing | RF/DC Spleter Deposition | Wire bonding | Water bonding | CVD PABRICATION SERVICES | E g | Water bonding | CVD FABRICATION SERVICES | E ng | Direct Write Lithography

ron Microscopy | Focused Ion Beam | Oxidat EXPERITES Centres Secure Dialer Operating | Hyperspectral Imaging | Laser I and Doping Furnaces | Electroplating | Hot E EXPERITES Control Score Dialer Operating Oxidation and Doping Furnaces | erspectral Imaging | Laser Doppler Vibrometry | Laser Scanning Confocal Microscopy | Oxidation and Doping Furnaces | erspectral Imaging | Laser Doppler Vibrometry | Electron Beam Lithography | Laser Scanning Confocal Microscopy | Oxidation and Doping Furnaces | erspectral Imaging | Laser Doppler Vibrometry | Electron Beam Lithography | Laser Scanning Confocal Microscopy | TIRF Microscopy | rmal-Scanning Probe Lithography | Hot Embossing | Hyperspectral Imaging | Laser Doppler Vibrometry | Laser Scanning Confocal Microscopy | TIRF Microscopy | Nano Imprint Lithography | Laser Doppler Vibrometry | Laser Doppler Vibrometry | Laser Scanning Confocal Microscopy | TIRF Microscopy | Nano Imprint Lithography | Laser Doppler Vibrometry | Laser Doppler Vib

THIN FILMS & COATINGS | OPTICS PHOTOVOLTAICS | MEDICAL DEVICES | MEMS FLEXIBLE ELECTRONICS | BIOSENSING DRUG DELIVERY | MICRO & NANOFLUIDICS

WHAT IS ANFF-VIC

The Victorian Node of the Australian National Fabrication Facility (ANFF-VIC) offers open-access micro and nanofabrication expertise, equipment and capabilities to industry and academia.

ANFF-VIC is home to the ISO 9001 certified Melbourne Centre for Nanofabrication (MCN), one of the largest open-access cleanroom facilities in the southern hemisphere.

The network also comprises capabilities at the CSIRO, Deakin University, La Trobe University, Monash University, RMIT, Swinburne University of Technology, and the University of Melbourne.

EZZI VISION

Vacuum & Thin Film Technology

The Vacuum Equipment Specialist

Specializing in Sales and Service of :

Vacuum Pumps, Glove Box Systems, Thin Film Deposition Systems, Vacuum Gauges, Freeze Dryers, Vacuum Ovens, Helium Leak Detectors, Sputter Targets, **Evaporation Materials, Electron Beam & Sputter Sources**

- Nanotechnology Research & Development
- Lithium Battery Research, Development & Production
- **Photovoltaic** and **renewable energy** application and other **OLED** related applications

Call Now For Your Obligation Free Quote + 61 (0) 3 97270770

E: sales@ezzivision.com.au W: www.ezzivision.com.au

OXYMAT

T H Y R <u>A</u> C O N T

ULVAC

Plenary Speakers

Professor Chun Ning Lau *The Ohio State University, USA*

Prof Chun Ning (Jeanie) Lau received her PhD in 2001 at Harvard University. She was a research associate at Hewlett Packard Labs in Palo Alto from 2002 to 2004, before joining the University of California, Riverside in 2004 as an Assistant

Professor. She was promoted to Associate Professor in 2009 and full Professor in 2012. Since January 2017 she joined The Ohio State University as a Professor of Physics.

Her research interests include exploring the novel phenomena in materials, systems and devices on the nanometer length scale with the goal to understand and exploit such phenomena that arise from quantum confinement of atoms and molecules to reduced dimensions. She is currently working on low-dimensional materials, graphene, black phosphorus and other heterostuctures for new classes of electronic and electromechanical devices. Bio and image courtesy of OSU.

Professor Gordon Wallace University of Wollongong, Australia

Prof Gordon Wallace's research interests include new materials and additive fabrication. The use of materials in creating innovative approaches to current challenges in energy and health are areas of particular interest. With more than 800 refereed publications, he has attracted some 30,000 citations and has a h-

index of 75. He has supervised more than 100 PhD students to completion at the Intelligent Polymer Research Institute and currently co-supervisors 30 PhD students.

Professor Wallace was appointed an Officer of the Order of Australia and served as Wollongong's Australia Day ambassador in 2017. He was appointed to the Prime Ministers Knowledge Nation 100 in 2015. Professor Wallace is a Fellow of the Australian Academy of Science, Australian Academy of Technological Sciences and Engineering (ATSE), Institute of Physics, and Royal Australian Chemical Institute (RACI). Bio and images courtesy of University of Wollongong.

Professor Huili Grace Xing *Cornell University, USA*

Prof Grace Xing's research interests include GaN based devices, II-VI nanowire (such as InGaN) enabled devices, as well as 2D crystal materials and devices. She is currently investigating van der Waals epitaxy, carrier electrostatics and transport, optoelectronic responses, p-n junctions and heterostructures, field modulation and tunnelling,

metamaterials and THz applications graphene physics and devices.

Her research group has pioneered design, fabrication and characterisation of III-V TFETs, with current focus on 2D-crystal based steep slope transistors: the Thin-TFETs, tunnelling field effect transistors for high efficiency logic electronics.

Prof Xing obtained her PhD from the University of California, Santa Barbara. She moved to Cornell in 2015 after 10 years serving as a faculty at the University of Notre Dame. Bio and image courtesy of Cornell University.

Professor James Hone Columbia University, USA

PI Prof James Hone directs the US NSF-funded Center for Precision Assembly of Superstratic and Superatomic Solids (PAS3) at Columbia University, and he coordinates collaboration between PAS3 and FLEET. Hone brings with him his expertise in assembling the highest quality heterostructures of 2D materials, a field he pioneered, to bear on the

necessary device structures for indirect-exciton and exciton-polariton condensation in atomically thin materials, advancing FLEET's Enabling Technology Theme B.

Professor Hui-Ming Cheng Institute of Metal Research, Chinese Academy of Sciences, China

Prof Hui-Ming Cheng is Professor and Director of Advanced Carbon Research Division of Shenyang National Laboratory for Materials Science, Institute of Metal Research, the Chinese Academy of Sciences.

His research activities mainly focus on the synthesis, properties and applications of carbon nanotubes, graphene, energy storage materials, photocatalytic semiconducting materials, and high-performance bulk carbon materials. He has published over 350 peer-reviewed papers in Nature, Nature Mater., Nature Commun., PNAS, Adv. Mater., JACS, Angew. Chemie, Adv. Funct. Mater., Adv. Energy Mater., ACS Nano, J. Mater. Chem., Carbon, etc. Image courtesy of CAS.

Professor Lei Jiang

Prof Lei Jiang was elected as members of the Chinese Academy of Sciences and The World Academy of Sciences in 2009 and 2012. In 2016, he also elected as a foreign member of the US National Academy of Engineering. He has been recognised for his accomplishments with Humboldt Research Award (Germany, 2017), Nikkei Asia Prize (Japan, 2016), MRS Mid-Career Researcher Award (USA, 2014), National Natural Science Award (China, 2005).

He has published over 500 papers including 3 papers in Nature, 1 paper in Science, 1 paper in Nature Nanotechnology, 1paper in Nature Reviews Materials, 2 paper in Nature Materials, 6 papers in Natural Communication, 5 papers in Science Advance, 3 papers in Chem. Rev., 7 papers in Chem. Soc. Rev., 6 papers in Acc. Chem. Res., 47 papers in Angew. Chem. Int. Ed., 32 papers in J. Am. Chem. Soc., and 129 papers in Adv. Mater., the works have been cited more than 58000 times with an H index of 119.

Editorial Panelists

Dr Jovia Jiang Deputy Editor, Wiley Dr Jiang obtained both her Bachelor's degree (1st Class Honors) and PhD from the School of

Materials Science and Engineering of Nanyang Technological University (NTU, Singapore). She mainly worked on nanomaterials and devices. She joined Wiley in 2013 as a peer review editor for the materials sceicne journals. She is now Deputy Editor of Small, and an editor of Advanced Materials, Advanced Electonic Materials, and Advanced Materials Technologies.

Dr Luke Fleet Senior Editor, Nature Research Luke joined Nature Physics in 2014, having previously been an editor for Nature Dr. Luke Fleet is a Senior Editor & Team Leader

at Nature. Following a PhD on semiconductor spintronics from the University of York and in collaboration with the RIEC at Tohoku University, he undertook postdoctoral research in organic electronics at Imperial College London and the London Centre for Nanotechnology. Luke joined Nature Research in 2013 as an editor at Nature Communications, before moving to Nature Physics in 2014, and then to Nature in 2017. In his role, Luke is responsible for selecting the research papers that are published in Nature across a broad range of fields, including applied physics and electronics. He also assists the Chief Editor in devising and delivering the goals for the physics, astronomy and electronics team.

Dr Esther Levy *Editor-in-Chief, Wiley* Esther Levy is Editor-in-Chief of Advanced Materials Technologies and Consulting Editor for Advanced Materials,

Advanced Science and Small. She joined the Advanced Materials editorial team (Wiley-VCH, Germany) after completing her PhD in physical organic chmistry at Cambridge University (UK) in 1997. In January 2007, Esther relocated to Sydney to take up the position of Senior Commissioning Editor for Wiley's physical sciences book, journal and society publicing program in the Asia-pacific region. She rejoined the Advanced journals' editorial team in 2011.

Dr Guilin Wang Managing Editor, Science China Materials Dr Guilin Wang obtained his PhD in

chemical engineering from the University of Alberta in 2011, and then undertook postdoctoral research for two years at Tsinghua University. His research interests focused on biomaterials and nanomedicine. He joined Science China Press in 2014, having previously worked as an editor for National Science Review. He is now Managing Editor for Science China Materials since its launch at the end of 2014, and is responsible for selecting research papers and the publishing processes of the journal.

Keynote Speakers

Professor Paola Barbara

Georgetown University, Washington, USA

Paola Barbara is a physics professor at Georgetown University in Washington, DC, USA. Her research interests include quantum transport and superconductivity, as well as novel nanoscale devices based on atomically thin materials, ranging from chemical sensors to detectors and sources of electromagnetic radiation

She received her M.S. degree (Laurea in Fisica) at the Univerity of Salemo, Italy, and her Ph.D. in Physics at the Technical University of Denmark in Lyngby, Denmark. Prior to joining the faculty at Georgetown University in 2000, she worked at the Center for Superconductivity Research at the University of Maryland.

Dr Blanca Biel University of Granada, Granada, Spain

Blanca Biel joined the University of Granada (Spain), where she is a Research Fellow at the Department of Atomic, Molecular and Nuclear Physics. Her research interests include the study of the electronic and quantum transport properties of one-and two- dimensional

materials by means of combined atomistic (Density Functional Theory and tight-binding methods) and quantum transport (Non Equilibrium Green's Functions) simulation tools.

In particular, her work focuses on the impact of disorder at the atomic scale in this systems, such as atomic vacancies or dopants, and on the simulation, by first-principles methods, of the Scanning Probe Microscopy (STM and AFM) characterization of these defects.

Professor Xiangfeng Duan University of California, Los Angeles, USA

Professor Duan received his Ph.D. degree in physical chemistry from Harvard University in 2002. He was a Founding Scientist, Principal Scientist and Manager of Advanced Technology at Nanosys Inc. from 2002 to 2008. He joined UCLA in 2008 as an Assistant Professor and became an Associate Professor in 2012 and a full Professor in 2013.

He is an Associate Editor for the jounral Nano Research. He has over 300 published articles and over 30 US patents. The Duan Lab's research interests include nanoscale materials, devices and their applications in future electronics, energy technologies and biomediacl science. His research focuses on rational design and synthesis of highly complex nanostructures with precisely controlled chemical composition, structural morphology and physical dimension; fundamental investigation of new chemical, optical, electronic and magnetic properties; and exploration of new technological opportunities arising in these nanoscale materials. Image and bio courtesy of UCLA.

Professor Zaiping Guo University of Wollongong, Australia

Professor Zaiping Guo has been involved with Electochemistry, nanotechnology and materials science since 1993 and has extensive knowledge and experience in material preparation, physical and structural characterisation and electrochemical testing and modelling. She has

established a research program in nanomaterials for different applications, such as lithium ion batteries, supercapacitors, hydrogen storage and fuel cells.

She is particularly interested in ways to improve the performance and cycle life of these nanomaterials, identifying the specific physical and chemical properties that can be put to a particular practical use. Prof Guo's current h-index is 65. Bio and image courtesy of University of Wollongong.

Professor Baohua Jia *Swinburne University of Technology, Australia*

Professor Baohua Jia is a research leader at Swinburne's Centre for Micro-Photonics and Program Leader for Swinburne's Manufacturing Futures Research Institute.

Her research is focused on a range of areas including laser nanofabrication of novel photonic nanostructures, investigation of functionality and nonlinear effects inside 3D photonic nanostructures, development of active photonic devices facilitated with nanoemitters and development of novel nonplasmonic devices with laser nanofabrication. She also examines the employment of nanostructures and nanomaterials for solar energy harvesting and storage research, and has recently focused her research on laser interaction with two-dimensional materials and functional devices.

Professor Jia's research findings on cutting-edge nanophotonics solar cells has been highlighted in the MIT Technology Review with more than 150 media reports worldwide. Bio and image courtesy of Swinburne.

CI Professor Kourosh Kalantar-Zadeh University of New South Wales, Australia

CI Professor Kourosh Kalantar-Zadeh has significantly influenced many fields of engineering including two dimensional transition metal compounds, liquid metals, microfluidics, sensors, electronic devices and medical systems. He develops novel two dimensional semiconducting materials, through theory,

synthesis, and characterisation.

His team also develops the fabrication techniques necessary for advanced devices, using electron and ion beam lithography and other tools for FLEET's Enabling Technology Theme B. Prof Kalantar-Zadeh is currently an ARC Laureate Fellow.

Associate Professor Changgu Lee Sungkyunkwan University, South Korea

Associate Professor Changgu Lee joined the department of Mechanical Engineering and SKKU Advanced Institute of Nanotechnology, Suwon, Korea in 2010 after his postdoctoral appointment at Columbia University, New York, USA worksing with Prof James Hone. Lee

completed his Ph.D. at Columbia University working on Power-MEMS for small energy generation.

His current research interest is surrounding the synthesis and nanomechanics of atomically thin materials such as graphene and transition metal dishalcogenides. Image courtesy of SKKU.

Dr Lain-Jong (Lance) Li King Abdullah University of Science and Technology, Saudi Arabia

Dr Lain-Jong (Lance) Li now serves as a Research Director in the Corporate Research at Taiwan Semiconductor Manufacturing Company (TSMC). He received his BSc and an MSc in chemistry at National Taiwan University. After 5 years of R&D at Taiwan Semiconductor Manufacturing Company (1997-2002), he obtained his Ph.D. of condensed matter physics

at Oxford University in 2006. He was an Assistant Professor in Nanyang Technological University Singapore (2006-2009). Since 2010, he has become an Associate Professor at Academia Sinica Taiwan. He joined King Abdullah University of Science and Technology in 2014 and became a full professor in 2016.

His main research interest focuses on carbon nanotubes, graphene and 2D materials for electronic and energy applications, and large-scale growth of various 2D materials.

Professor Yunqi Liu, Institute of Chemistry *Chinese Academy of Sciences, China*

Professor Yunqi Liu has long been engaged in molecular materials and devices research. His group was the first use liquid copper to grow graphene and prepare nitrogen-doped graphene whose electrical property can be controlled. He developed a new method to directly grow graphene on the dielectriclayer and revealed effect of interface on the device

performace, developed a new solution-based processing technology, and brought about multifunctionalization of the device.

He has published more than 500 SCI papers (among which over 120 are published in journals whose impact factors are greater than 10) cited for more than 20,000 times with h factor greater than 70, and developed 67 patented inventions. Bio and image courtesy of CAS.

nanocarbon materials.

Professor Kian Ping Loh National University of Singapore, Singapore

Professor Kian Ping Loh received his Ph.D. from Oxford University in 1996. He is currently leading the Carbon Convergence Technology Laboratory, one of the central facilities at the National University of Singapore developing characterisation, synthesis and processing methods for graphene and

His group works on developing wafer scale graphene and 2-D films growth and transfer technologies, as well as large scale solution processing technologies for 2-D films and graphene, and their applications in membranes for environmental applications and energy storage. Image courtesy of NUS.

Associate Professor Jill Miwa Aarhus University, Denmark

Associate Professor Jill Miwa received her Ph.D. in Canada and did her postdoctoral training at the Centre for Quantum Computation and Communication Technology at UNSW where she worked on the design, fabrication and characterisation of a single atom transistor.

She joined Aarhus University in 2015 as a postdoctoral researcher investigating novel two-dimensional materials by microscopy and spectroscopy techniques. She is now an Associate Professor in the Department of Physics and Astronomy, working to develop and expand research activities at the synchotron radiation source, ASTRID2, where she will characterise quantum materials for quantum computing applications. Bio and image courtesy of Aarhus University.

Professor Shizhang Qiao University of Adelaide, Australia

Professor Shizhang Qiao joined the School of Chemical Engineering of the University of Adelaide in 2012 as a Professor. His research expertise is in nanomaterials and nanoporous materials for new energy technologies (electrocatalysis, photocatalysis, batteries, fuel cell, supercapacitors).

He has co-authored more than 310 papers in refereed journals, including Nature, Nature Energy, Nature Communications, Angew Chem Int Ed, J. Am. Chem. Soc and Advanced Materials (over 27,300 citations, h-index: 86).

He has filed three patents on novel nanomaterials and attracted more than 11 million dollars in research grants from industrial partners and Australian Research Council. He is currently an ARC Laureate Fellow. Bio and image courtesy of University of Adelaide.

Professor Andrew Wee National University of Singapore

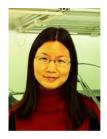
Professor Andrew Wee is a Professor of Physics at the National University of Singapore (NUS). His research interests include scanning tunnelling microscopy (STM) and synchrotron radiation studies of the molecule-substrate interface, graphene and 2D materials, and related device studies.

He is an Associate Editor of ACS Nano, and on the Editorial Boards of several other journals. He holds a BA (Hons) and MA from the University of Cambridge, and received his DPhil from the University of Oxford.

Dr Ting Yu Nanyang Technological University, Singapore

Dr Ting Yu is a Professor in Division of Physics and Applied Physics, Nanyang Technological University, Singapore. His research interests are optical, optoelectrical and electrochemical properties and devices of 2D materials.

Dr Yu has published more than 260 SCI papers and received over 16,000 nonself-citations. His H-index is 70.



Professor Jun Zhu Penn State, USA

Professor Jun Zhu received her Ph.D. from Columbia University in 2003. She was a postdoc fellow in Cornell University from 2003-2005 before joining Penn State University in 2006. She is currently a Professor of Physics at Penn State.

Her research interest focuses on the understanding of new physics and device functionalities arising from reduced dimenionality, many-body interactions and the control of new electronic degrees of freedom in nanoscale materials and devices.

Her recent research projects explore the electronic properties of van der Waals materials and intereferences, with a particular emphasis on valleytronic, topological, and quantum Hall phenomena.

Professor Shuyun Zhou *Tsinghua University, China*

Professor Shuyun Zhou received her Ph.D. in Physics from University of California at Berkeley in 2007. From 2008 to 2012, she was a postdoc fellow of the Advanced Light Source and a project scientist of Materials Sciences Division of the Lawrence Berkeley National Laboratory. She joined the Department of Physics at Tsinghua University in 2012.

Shuyun Zhou's research focuses on the electronic structure of novel two-dimensional materials and heterostructures using advanced electron spectroscopic tools, including angle-resolved photoemission spectroscopy (ARPES), Spin-resolved ARPES, Nano-ARPES and ultrafast time-resolved ARPES. She has made important progress on the electronic structure of novel transition metal dichalcogenides, type-II topological semimetal and van der Waals heterostructures. Image courtesy of Tsinghua University

MONDAY	10 DECEMBER			
1400-1700	Registration Open			
1700-1900	Welcome Reception - Conference	Foyer		
		,		
TUESDAY	11 DECEMBER			
0830-0850	Opening Ceremony 105 & 106 - C	hair: Michael Fuhrer		
0850-1020	Plenary Session			
Room	105 & 106			
Session Chair	Qiaoliang Bao			
0850-0935	Lei Jiang			
0000 0000		uper-wettability to binary cooperation	ve complementary systems	
0935-1020	Hui-Li Xing			
1020-1050	2D materials for high-performanc	e electronics		
1020-1030	Morning Tea Concurrent Symposia 1			
1030-1230	Physics - Room 106	Devices - Room 105	Chemistry - Room 104	Synthesis - Room 103
Session Chair	Jeff Davis	Yi Du	Jie Zhang	Lan Wang
coolon chai		1100		Lan Wang
	Shuyun Zhou Van der Waals	Andrew Wee		Changen las
1050-1120	heterostructures: from	The organic-2D transition metal	Shizhang Qiao Electrocatalysis for water	Changgu Lee Magnetic and physical
1050-1120	commensurate superlattice to	dichalcogenide interface	splitting and CO ₂ conversion	properties of new 2D materials
	incommensurate quasicrystal	alenaleogeniae interjace	spitting and co 2 conversion	properties of new 20 materials
	,,	DL 11		
	Victor Galitski	Philip Feng Atomic layer 2D	Chuan Zhao	Sunmin Ryu
1120-1140	Quantum Cavity Enhancement	nanoelectromechanical systems	Nickel-iron based 2D materials	Nanoscopic redox governing
1120-1140	of Superconductivity and	(nems) with ultra-broad electrical	for electrocatalytic	charge carriers in two-
	Superconducting Polaritons	tunability	jor ciccirocatalytic	dimensional crystal s
		Lin Wang	Linlin Cao	Paul Atkin
	Changxi Zheng	Band structure engineering of	Coordination-engineering cobalt	Investigating novel synthesis,
1140-1155	Room temperature in-plane	atomically thin PBI ₂ with	on phosphorized carbon nitride	optical properties and
	ferroelectricity in β' -In ₂ Se ₃	monolayer transition metal	for water splitting	applications of model 2D
		dichalcogenide s		semiconducting nanocrystals
	Chongyun Jiang		Tanesh Gamot	
1155 1010	Helicity dependent photocurrent in transition metal	Sumeet Walia Phosphorene: an alternative	Enhanced properties of the high internal phase water-in-oil	Nan Pan Edge optical scattering of two-
1155-1210	dichalcogenide van der Waals	elemental analog of Graphene	emulsion using graphene oxide-	dimensional materials
	heterostructures	cientental analog of Graphene	based additives	unicipional materials
	neter ostrattares			
	Jianhao Chen		America Manual de Danas	Kai Liu
	Conventional and in-situ	Xinran Wang	Amadeo Vazquez de Parga Graphene as playground for	Mai Liu Motions induced by interface
1210-1230	quantum transport	Ultralow power MoS ₂ negative	molecules: from chemisorption to	strain in nano-layered
	measurement of two-	capacitance field-effect transistors	catalysis	structures
	dimensional materials			
1230-1330	Lunch Break			
1330-1500	Concurrent Symposia 2 Physics - Room 106	Devices - Room 105	Chemistry - Room 104	Synthesis - Room 103
Session Chair	Michael Fuhrer	Andrew Wee	Zongyou Yin	Torben Daeneke
Contraction Chair		Xing Wu		Torben Daeneke
	Brian Kiraly	Xing Wu Advanced in situ TEM on	Velram Balaji Mohan	Jiadong Zhou
1330-1350	An orbitally driven single atom	manipulation of nanostructure	Hybrid composites of graphene	Synthesis and properties of
100.1000	magnetic memory on black	and probing new properties at	and polymers for 3D printing	magnetic atoms doped MoS 2
	phosphorus	atomic scale	, ,	5
			V. In The	
			Yu Lin Zhong Mass production of	7hong Liu
	Nicola Gaston	Jianbin Xu	Mass production of electrochemically-derived	Zheng Liu Synthesis of a library of
1350-1410	How robust is the metallicity of	Detection and modulation of light	graphene oxide in a packed bed	atomically-thin metal
	two-dimensional gallium?	wave with graphene	reactor and its application in	chalcogenides
			nanocomposites	
	Tobias Maerkl		Feng Xin	
	Black-phosphorous-like	Dongchen Qi	On-chip micro-supercapacitors	Fengqiu Wang
		Engineering the 2D hole gas on		Tailoring photocarrier
1410-1425	bismuthene and antimonene in		integrated gas sensor based on	1 1 1 22
1410-1425	bismuthene and antimonene in topological van der Waals	diamond by surface transfer doping and its device applications	integrated gas sensor based on three dimensional graphene	dynamics in 2D materials and heterostructures

1425-1440	Zhe Liu Electromechanical actuation properties of group IV monochalcogenides	Seong Jun Kim Multi-functional sensor based on rGO/SWCNT fabric with high durability and waterproofing for human-motion detection	Yehia Manawi Engineering the Surface and Mechanical Properties of Water Desalination Membranes Using Ultra Long Carbon Nanotubes	Wooyoung Shim Van der Waals crystal for battery applications		
1440-1500	Barbaros Özyilmaz Spin transport studies in graphene and black phosphorus	Haitao Chen Directional valley-locked emission from a monolayer transition metal dichilcogenide enabled by plasmonic nanoantenna	Muthana Ali Graphene oxide-silica hybrid capsules for sustained fragrance release	Kevin Sivula Liquid-phase exfoliated semiconducting transition metal dichalcogenide 2D nanoflakes for large-area optoelectronic applications		
1500-1530	Afternoon Tea					
1530-1700	Editoral Plenary Session facilitated by Michael Fuhrer - 105 & 106 Luke Fleet (Nature), Jovia Jiang (Small), Esther Levy (Advanced Materials Technologies) and Guilin Wang (Science China Materials)					
1700-1830	Poster Session 1 - Sponsored by Light - Science & Applications Conference Foyer 1.1 & 1.2					

WEDNESD	DAY 12 DECEMBER							
0830-1000	Plenary Session							
Room	105 & 106							
Session Chair	Jun Zhu							
0830-0915	Gordon Wallace							
0830-0913	Graphene – the development pipe	eline						
0915-1000	Chun-Ning Lau							
	Spin and charge transport in 2D n	naterials						
1000-1030	Morning Tea							
1030-1230	Concurrent Symposia 3							
	Physics - Room 106	Devices - Room 105	Devices - Room 104	Synthesis - Room 103				
Session Chair	Antonija Grubisic-Cabo	Blanca Biel	Vipul Bansal	Uli Zuelicke				
1030-1100	Jill Miwa Vandium sulphide compounds at the 2D limit	Xiangfeng Duan Van der Waals integration beyond 2D materials	Paola Barbara Nanostructured graphene for ultra-broadband photodetectors	Yunqi Liu Controlling growth of graphene and its electronic properties				
1100-1120	Adrian Cernescu Real-space mapping of polaritons in 2D materials	Moon-Ho Jo Programmable doping of atomically thin van der Waals semiconductors with light probes	Weida Hu Infrared photodetector based on 2D materials: progress, challenges, and opportunities	Lin He Detecting valley splitting and valley-contrasting spin splitting at single-electron level around atomic defects of graphene				
1120-1135	Mustafa Eginligil Doping effect on light polarization dependent photocurrent of a 2d semiconductor	Baishan Liu Band alignment modulation of ZnO nanorods/monolayer MoS ₂ mixed-dimensional heterosructure via strain engineering	Sivacarendran Balendhran Resistive memories and uv sensors based on layered MoO(_{3-x})	Lijun Zhang Ubiquitous interlayer coupling in two-dimensional materials and its effects on materials properties				
1135-1150	Guodong Liu Electronic band structure study of exfoliated millimeter-sized mono-layer MoTe 2 using angle- resolved photoemission spectroscopy	Achint Jain One-dimensional edge contacts to monolayer MoS ₂	Zhongming Wei Polarization-sensitive photodetectors based on 2D layered semiconductors	Elisa Ang Single layer transverse flow carbon nanotube membrane for desalination				
1150-1210	Zexiang Shen Configuring the structures of 2D materials and perovskites and their applications	Semonti Bhattacharyya Universal conductance fluctuations as a direct probe to detect crossover of symmetry classes in topological insulators	Kai Zhang Narrow-gap 2D semiconductors for IR and THz optoelectronics	Yu Ye Desired two-dimensional materials' properties by designed growth				
1210-1230	Miguel Ugeda Multifractal superconductivity in single-layer NbSe ₂	Zhenhua Ni Defect engineering for modulating the trap states in 2D photoconductor	Wenzhong Bao 2D transition metal dichalcogenides: from field effect transistors to wafer-scale circuits	Xiaojun Wu Computer simulation and design of 2D crystals with tunable band gap and magnetic properties				

1230-1330	Lunch Break						
1330-1510	Concurrent Symposia 4						
	Physics - Room 106	Devices - Room 105	Chemistry - Room 104	Physics - Room 103			
Session Chair	Yuerui Lu	Yu Lin Zhong	Zongyou Yin	Yi Du			
1330-1400	Jun Zhu Quantum valley Hall effect and valleytronics in bilayer graphene	Zaiping Guo Two-dimensional electrode materials for metal-ion batteries	Lain-Jong Li Two-dimensional semiconducting materials: candidates for extending Moore's Law	Ting Yu Light-matter interactions in 2D materials			
1400-1420	Marc Bockrath Interacting Electrons in Bilayer Graphene and Bilayer Graphene/hBN Moiré Superlattices	Jiong Lu Recent STM studies of gate- tunable 2D material devices	Goki Eda Hot carrier optoelectronic devices based on van der Waals heterostructures	Ali Yazdani Visualizing quantum hall liquids and their boundary modes			
1420-1435	Aydin Cem Keser Yanqing Jia Effect of spin-charge disorder Novel all-solid-state correlations on the AHE in 2D supercapacitors based on dirac fermions snowflake-like Ni ₃ Si ₂ /NiOOH		Saju Daniel Natural rubber/st-LDH/MWCNT hybrid bio nanocomposites as flexible EMI shield	Yu Zhang An Atomic-scale on/off Switching of Magnetism at Point Defects in Graphene			
1435-1450	Momoko OnoderaAzmira JannatMetallic carrier transport and superconductivity in novel transitional-metal dinitrides, ReN2 crystalsPhysisorptive two dimensional tin sulphide nanoflackes with extraordinary sensitivity and selectivity to NO2 at room temperature		Peter Sherrell 2D crystal heterostructures for water-oxidation	Luhua Li Properties and applications of atomically thin boron nitride			
1450-1510	Alexander Tries O Strong exciton effect in graphene nanoribbons Anlian Pan Single nanostructure band gap engineering and heterostructures of atomic layered semiconductors		Mohammad Rezwan Habib Tunable photoluminescence in organic semiconductor/two- dimensional transition metal dichalcogenides van der Waals heterojunction	Yuanbo Zhang Visualizing the electronic structure of thin layers of Bi ₂ Sr ₂ CaCu ₂ O ₈ +delta			
1510-1540	Afternoon Tea						
1540-1720	Concurrent Symposia 5						
	Physics - Room 106	Devices - Room 105	Chemistry - Room 104	Synthesis - ROOM 103			
Session Chair	Semonti Bhattacharyya	Zaiping Guo	Jennifer MacLeod	Torben Daeneke			
1540-1600	Simon Brown Topological nanostructures: bismuth and related materials	Phillip Aitchison Redefining the "things" in the IoT: graphene-enabled internet of materials for large area sensing	Hong Li Strain-enhanced two- dimensional electrocatalysts for water splitting and beyond	Jie Zhang Advanced composite two–dimensional energy materials by simultaneous anodic and cathodic exfoliation			
1600-1620	Zhi Li Realization of flat band with possible non-trivial topology in electronic Kagome lattice	Rongjin Li Large-area two-dimensional organic single crystals	Nigel Lucas Superphenylphosphines: ligands that direct metal coordination and bulk assembly via "nanographene" substituents	Nai-Chang Yeh Exploring the quantum states and quantum degrees of freedom in 2D van der Waals materials and topological insulators			
1620-1640	Ping-Heng Tan Moiré phonons in twisted bilayer MoS ₂	Dohun Kim Graphene bolometers for sensitive detection of nitrogen-vacancy spin states in diamond	Si Zhou Ab initio design of carbon based hybrid electrocatalysts	Yuan Huang New mechanical exfoliation technique for preparing large area 2D materials and special structures			
1640-1700	Xia Hong Functional design of MoS ₂ via nanoscale ferroelectric control	Yuefeng Yin Enhancing electronic fingerprints of physisorbed molecules of graphene	Yanfeng Zhang Controlled growth and versatile applications of metallic transitional metal dichalcogenides	Libo Gao Growth of environmentally stable transition metal selenide films			

1700-1720	2D material devices as lab-on-a-		Yongxiang Li Facile solution-phase synthetic strategy of 2D SnS nanosheets and its ethanol sensing characteristics	Marko Kralj In situ growh control and further physical and chemical engineering of CVD MoS ₂
1720-1850	Poster Session 1 - Sponsored by Conference Foyer 1.1 & 1.2	NPI Lasers		
1900-2200	Conference Dinner - ICON-2DMA	T Young Scientist and Poster Award (Ceremonies: Ground floor Conferen	ce Courtyard
THURSDA	Y 13 DECEMBER			
0830 - 1000	Plenary Session			
Room	105 & 106			
Session Chair	Michael Fuhrer			
0830 - 0915	Hui-Ming Cheng Graphene and 2D materials films	and membranes: Fabrication and Ap	plications	
0915 - 1000	James Hone			
1000 - 1030	Method and materials for van der	r Waals heterostructures		
1000 - 1030	Morning Tea Concurrent Symposia 6			
1050 1250	Physics - Room 106	Devices - Room 105	Chemistry - Room 104	Synthesis - Room 103
Session Chair	Antonija Grubisic-Cabo	Qiaoliang Bao	Jie Zhang	Dan Li
	Blanca Biel			
	Point-like defects in transition	Baohua Jia	Kian-Ping Loh	Kourosh Kalantar-zadeh
1030-1100	metal dichalcogenides	Ultrafast laser interaction with 2D	Two dimensional ferroelectric	Liquid metals from metallic
	characterized by SPM	materials	films	core to two dimensional skin
	simulations Alexander Holleitner	Suk Ha Chai	Cuerbon Liu	Visul Bassal
	Generation of localized,	Suk-Ho Choi Si-quantum-dots-based	Guozhen Liu Graphene oxide thin film based in	Vipul Bansal Taking inspiration from biology
1100-1120	optically active defects in	optoelectronic devices by	vivo device for continuous	to preserve photo-sensitive 2D
	tunable 2D materials, using	employing doped-graphene	monitoring of interferon-γ in	materials against ambient
	helium ion irradiation	transparent conductive electrodes	inflammatory mice	oxidation
1120-1135	Ajit Srivastava Single photon-phonon entanglement in WSe 2 quantum dots Amadeo Vazquez de Parga Large-area heterostructures from graphene and encapsulated colloidal quantum dots via the Langmuir-Blodgett method		Thu Ha Tran Preparation and application of 1t'-phase ReS $_2$ xSe $_{2(1:x)}$ (x = 0 – 1) nanodots for hydrogen evolution reaction	Nitu Syed Wafer scale synthesis of two dimensional GaPO ₄ from liquid metal featuring a large out of plane piezoelectric response
1135-1150	Jiabin Qiao Twisted graphene hilgver Junpeng Lu		Yuanhui Sun Strong interlayer coupling and new phases of two-dimensional optoelectronic semiconductor InSe	Jiawei Liu Wet-chemical synthesis of ultrathin two-dimensional metallic nanosheets for (electro) catalytic applications
1150-1210	Mark Edmonds Electric field-tuned topological phase transition in ultra-thin Na ₃ Bi	ctric field-tuned topological Zhipei Sun ase transition in ultra-thin Nonlinear optics with 2D materials		Xiaoqiang Cui Single-atom cobalt covalently bound to distorted 1T-MoS ₂ for unprecedented hydrogen evolution catalysis
1210 - 1330	Lunch Break			
1330 - 1500	Concurrent Symposia 7	Devices - Room 105	Chomictry - Ream 104	Synthesis - Ream 102
Session Chair	Physics - Room 106 Bent Weber	Semonti Bhattacharyya	Chemistry - Room 104 Vipul Bansal	Synthesis - Room 103 Qiaoliang Bao
Session chall	Bentweber	Liu Lei		Chunxiao Cong
1330-1350	Nancy Sandler Deformed graphene membranes: from electronic waveguides to valley filters	Elu Lei Electrical control of spin-valley photocurrent in a monolayer semiconductor by circular photogalvanic effect	Jong Beom Baek Fused aromatic organic networks form syntheses and applications	Optical spectroscopic study of two-dimensional layered materials and their heterostructures
1350-1410	Uli Zuelicke Quantum capacitance and spin susceptibility of HgTe quantum wells	Jennifer MacLeod On-surface synthesis of organic 2D materials	Shayan Seyedin MXene for wearable energy storage	Zaiquan Xu Tunable room-temperature single-photon emission in atomically thin materials

1410-1425	Momoko Onodera Influence of C-rich domain in h- BN on carrier transport of graphene/h-BN van der Waals heterostructures	Pingan Hu High performance electronics and optoelectronics based on two dimensional layered films	Qiang Fu Engineering 2D Metal-Organic Frameworks for Separation Membranes	Ankur Sharma Efficient and layer-dependent exciton pumping across atomically-thin organic- inorganic type-l heterostructures
1425-1440	Wei Tao Quasiparticle interference study of topological semimetal ZrSiS due to surface defects at 4.5 K	Azmira Jannat Two dimensional indium sulfide with excellent optoelectronic properties	Fangxin Hu PT/Graphene Foam Biofilm for Highly Sensitive and Selective In- Situ Adsorption and Detection of Superoxide Anions Released from Living Cells	Yingping Pang Heavy-metal-free quasi-2D colloidal semiconductor nanoplatelets with atomically uniform thickness
1440-1500	Dongkeun Ki Interaction-driven finite- temperature phase transitions in graphene multilayers	Feng Miao Electronic transport and device applications of 2D materials	Yongfa Zhu Organic photocatalysts for energy, environment and anti- tumor	Liangzhi Kou Multiferroic coupling in novel two-dimensional materials
1500 - 1530 Afternoon Tea				
1530 - 1700	Concurrent Symposia 8			
	Physics - Room 106	Devices - Room 105	Chemisrty - Room 104	Synthesis - Room 103
Session Chair	Lan Wang	Jill Miwa	Dan Li	Zaiquan Xu
1530-1550	Rachael Myers-Ward Remote epitaxy – a new paradigm for stackable electronic s	Nanshu Lu Nanobubbles and nanotents formed by 2D materials	Tao Yao Synchrotron radiation X-ray absorption in energy materials	Litao Sun Graphene-based materials for environmental protection
1550-1610	Agustin Schiffrin Low-dimensional organic nanostructures on surfaces: towards nanoscale control of interfacial (OPTO) electronic properties	Shu Ping Lau Solution exfoliated black phosphorus from materials to applications	Torben Daeneke Synthesis of 2D materials using liquid metal solvents	Yi Du 2D Xenes: a new family of quantum matters
1610-1625	Siyu Li Tuning electronic properties of graphene by STM tip	Ankur Sharma Defect engineering in few-layer phosphorene	Peter Sherrell Direct Printing in Three- Dimensions of 2D Materials Inks	Neeraj Mishra Graphene coated silicon carbide nanowires
1625-1640	Xinfeng Liu Strong light-matter interaction in layered materials	Litty Thekkekara Laser printed self-powered textiles	Hareem Khan Synthesis of 2D SnS materials for piezoelectric nanogenerator applications	Jinchang Fan Surface and interface engineering Pd-based ultrathin nanosheets for electrocatalysis
			Y	
1640-1700	Feixiang Xiang Thickness-dependent electronic structure in WTe ₂ thin films	Zheng Zhang Strong interlayer coupling in MoS 2 van der Waals homojunction constructed by defect engineering	Yuan Chen Nano-RuO 2-decorated holey graphene composite fibers for micro-supercapacitors with ultrahigh energy density	Nasir Mahmood Chemical designing of two- dimensional materials for renewable energy

Poster Abstracts

						Poster
D	Title	First Name	Last Name	Paper title	Session	Numbe
07	Ms	Salwa	Ali Ibrahim	Fluorescent detection of mycobacterium tuberculosis via a hybridization-based pull-down assay using semiconductor nanoprobes	Tuesday	1
				Cobalt sulfide nanoparticles embedded on nitrogen-		
42	Mr	Riccardo	Argurio	doped graphene as bifunctional electrocatalyst for zinc-air batteries	Wednesday	2
				Building a dna nanotube-based 3D dDNA walking		
				machine with highly executive efficiency for ultrasensitive electrochemiluminescence detection of	Tuesday	3
04	Prof	Yaqin	Chai	microrna		
				A solid-state electrochemliuminescence biosensor for		
61	Prof	Shihong	Chen	con a detection based on CeO2@Ag nanoparticles modified graphene quantum dots as signal probe	Wednesday	4
				Water permeation through metal cation modified	Tuesday	5
98	Ms	Karin	Ching	atomically thin membranes	Tuesday	5
				Planar hexagonal molybdenum oxide with	Wednesday	6
40	Ms	Farjana	Haque	intracrystalline molecular pores as an efficient and stable alkaline medium catalyst for her	Wednesday	0
	1113	. arjana	Huque	Preparation of 1t'-phase ReS2xSe2(1-x) (x = $0 - 1$)		
				nanodots for highly efficient electrocatalytic hydrogen	Tuesday	7
63	Ms	Thu Ha	Tran	evolution reaction		
				Cobalt oxide/3D graphene nanosheets composite by the pecvd and hydrothermal-thermal decomposition	Wednesday	8
54	Prof	Xiaoqiang	Cui	method for application in supercapacitor	weunesuay	0
				Facil band alignment of C3N4/CdS/MoS2 sandwich		
				hybrid with high photochemical performance under	Tuesday	9
97	Miss	Dantong	Zhang	visible-light		
ontrol	lable synthe	esis, characterisa	ions and mod	delling of 2D materials & structures		
				Cvd growth of graphene using solvent residing in a		
	Mr	Alaa Yousif Ali	Ali	pmma matrix as the carbon source at low temperature condition	Wednesday	10
	IVII	Aida fousii Aii	All	Molecular beam epitaxy of 1D & 2D vanadium		
62	Ms	Rebekah	Chua	diselenide on molybdenum disulfide	Tuesday	11
47	Prof	Xidong	Duan	Two dimensional lateral complicated struture	Wednesday	12
				Identifying the non-identical outermost selenium		4.0
51	Ms	Min	Hong	atoms and invariable bandgap across the grain boundary of anisotropic rhenium diselenide	Tuesday	13
51	1013		Hong	Fast synthesis and covalent modification of black		
79	Dr	Md Zakir	Hossain	, phosphorus and graphene	Wednesday	14
				Stability and electronic properties of 2d	Tuesday	15
64	Mr	Artem	Kuklin	tetraoxa[8]circulene nanosheets	•	
08	Ms	Wei Sun	Leong	Transferring graphene with paraffin	Wednesday	16
37	Mr	Scott	Lillie	Quantum imaging of 2d materials using nitrogen- vacancy centres in diamond	Tuesday	17
57		50011	Enne	Phase-selective synthesis of 1t' MoS2 monolayers and		
67	Dr	Lina	Liu	hetero-phase bilayers	Wednesday	18
				A tunable single-monochromator raman system based		
00	Dr	Vuelu	1	on the supercontinuum laser and tunable filters for	Tuesday	19
88	Dr	Xuelu	Liu	resonant raman profile measurements Ultrathin two-dimensional metallic nanosheets as		
69	Ms	JIAWEI	LIU	highly efficient (electro)catalysts	Wednesday	20
				Wafer scale monolayer Bi2O3 from liquid metal	Tuesday	21
70	Mr	Kibret	Messalea	bismuth with uv photodetector application	Tucsuay	12
60	Mr	Md	Mohiuddin	Electric field exfoliation of piezoelectric two dimensional materials	Wednesday	22
60 79	Mr	Parishuddababu	Movva	Bimetallic alloys for graphene/CNTs cvd growth	Tuesday	23
-				Electronic and optical properties of doped rReS2 and	,	
93	Dr	Kingsley	Obodo	ReSe2 mono-layer	Tuesday	24
			_	Non-stoichiometric WO3 precursor tuning the growth	Wednesday	25
97	Ms	Mei Er	Pam	and crystallinity of WS2	,	-
01	Mr	Eng Tuan	Poh	Laser induced micro-patterning of upconversion nanoparticles on molybdenum disulphide monolayer	Tuesday	26
~1	IVII	LINE FUUIT	1011	Two-dimensional metallic tantalum disulfide as a	147 I I	
23	Dr	Jianping	Shi	hydrogen evolution catalyst	Wednesday	27
25						
				Synthesis and photochemistry of gallium oxide	Tuesday	28
07	Ms	Nitu	Syed	synthesis and photochemistry of gallium oxide nanoflakes featuring trap state absorption Morphology engineering in monolayer MoS2-WS2	Tuesday	28

593	Mr	Jesse	Vaitkus	Disorder and dissipation in delta-doped phosphorus-in- silicon	Tuesday	30
393	IVII	16226	Valikus	Improved homogeneity and performance of field		
				effect transistors based on wafer-scale continuous	Wednesday	31
611	Mr	Hu	Xu	mos2 film towards practical application		
				Large-area and layer-controlled synthesis of few layer	Tuesday	32
829	Miss	Pengfei	Yang	MoS2 assisted by sodium chloride	,	
736	Dr	Xiaomei	Zhang	Plasma-assisted fabrication of 'in-depth' doped MoS2	Wednesday	33
			Zhang	vertical homostructure for optoelectronics application		
Device	applications	in electronics, ph	iotonics and o	•		
970	Dr	Taimur	Ahmed	Optoelectronic devices based on few layer black phosphorus	Tuesday	34
570	5.	lannar	, inflea	Synthesis of large area quasi-2D MoO3-x for high-		
810	Mr	Aram	Arash	performance optoelectronic devices	Tuesday	35
				Integration of graphene nanofibers to achieve an		
700				efficiency breakthrough in hole blocking layer-free	Wednesday	36
708	Dr	Xi	Chen	perovkite solar cells Self-powered multilayer MoSe2 metal-semiconductor-		
957	Mr	Veerendra	Dhyani	metal photodetector	Tuesday	37
			,	Graphene fet based detection of the non-zero planar		
724	Mr	Nikolai	Dontschuk	dipole moment of cytosine	Wednesday	38
				Ultrasensitive two-dimensional Bi2O2Se	Tuesday	39
639	Mr	Qundong	Fu	phototransistors on silicon substrate		55
				Flexible and highly sensitive strain-pressure sensor based on tmds-assisted graphene foam/polymer	Wednesday	40
751	Ms	Mehak	Mahajan	hybrid nanostructures	weunesuay	40
				Stable and scalable 1t MoS2 with low temperature-	Tuesday	
653	Ms	Chithra	H Sharma	coefficient of resistance.	Tuesday	41
				Near-infrared photoresponse excitations at	Wednesday	42
767	Ms	Liu	Haining	WSe2–organic molecules interfaces	,	
				Broadband photodetectors based on graphene-charge transfer complexes (cpx) hybrid structure with ultra	Tuesday	43
610	Mr	Muhammad Ahsan	Igbal	high photoresponsivity.	rucsuuy	-15
			•	Comparing the second harmonic generation on MoS2)A(a du a a da c	44
658	Mr	Jungcheol	Kim	with different stacking orders	Wednesday	44
714	Dr	Han	Lin	Graphene reflective microlens	Wednesday	45
				Flexible and highly sensitive strain-pressure sensor	T	40
816	Mr	Shuvra	Mondal	based on tmds-assisted graphene foam/polymer hybrid nanostructures	Tuesday	46
010	1011	Shavia	Mondai	Photodetection study in bilayer MoS2 using pd		
706	Ms	MONIKA	Moun	schottky contact	Wednesday	47
				The effect of gamma irradiation on hbn encapsulated	Tuesday	48
872	Dr	Maya	Narayanan Kutty	graphene field effect transistors	Tuesuay	40
760	14-	Oʻra arlan a	0	Strong depletion in hybrid perovskite p-n junctions	Wednesday	49
762	Mr	Qingdong	Ou	induced by local electronic doping Electrical characteristics of epitaxial graphene on		
518	Ms	Aiswarya	Pradeepkumar	silicon	Tuesday	50
		,		Investigation of doping effect during high-k dielectric)A(ada aada	۲1
743	Mr	Yaochen	Sheng	deposition by atomic layer deposition	Wednesday	51
				Heterogeneous copper nanowire-graphene oxide thin	- ·	
716	D-	1:++./	Thokkeler	films: a cost-effective platform for transparent conductive electrodes	Tuesday	52
716	Dr	Litty	Thekkekara	Radiation tolerance of 2d material based devices for		
788	Mr	Tobias	Vogl	space applications	Wednesday	53
			-	Quantum-correlated photons from semiconductor	Tuesday	54
596	A/Prof	Thomas	Volz	cavity polaritons	Tuesday	4ر
				Hybrid polaritons in a monolayer MoSe2-GaAs-	14/- 1 /	
857	Mr	Matthias	Wurdack	microcavity leading to monolayer induced bosonic condensation	Wednesday	55
0.7	IVII	watulids	WUIDDLK	Anisotropic kerr nonlinearity of lithium hydride		
500	Mr	Tieshan	Yang	intercalated black phosphorus	Wednesday	57
				Unconventional surface spin textures in topologically	Tuesday	58
715	Dr	Yuefeng	Yin	non-trivial metals	racsuay	50
				Contact-engineered electrical properties of monlayer	10/od	50
734	Mr	JianKun	Xiao	MoS2 field-effect transistors via sulfur vacancy engineering	Wednesday	59
/ 34	IVII	JIANKUII		engineering Monosulfur vacancies control via moderate chemical		
734	A/Prof	Zheng	Zhang	process for properties regulation of monolayer MoS2	Tuesday	60
840	Dr	Xiaorui	Zheng	Nanofrazor lithography for 2dDmaterials	Wednesday	61
				Light-tunable 1t tantalum disulfide charge-density-	Tuesday	62
594	Mr	Chao	Zhu	wave oscillators	. acoudy	52
	Mr	Yi	Zhu	High-efficiency monolayer molybdenum ditelluride	Wednesday	63
814		11	Zhu	light emitting diode and photodetector		

Physical	properties	of 2D materials	6			
				Measuring electron inelastic mean free path in		
				epitaxial graphene on sic: comparing free-standing-	Tuesday	64
667	Mr	Mojtaba	Amjadipour	graphene to the buffer layer		
				Universal conductance fluctuations as a direct probe		
				to detect crossover of symmetry classes in topological	Tuesday	65
672	Dr	Semonti	Bhattacharyya	insulators		
				Photoinduced charge density wave phase transition in	Wednesday	66
745	Ms	Chunhe	Dang	two-dimensional 1t-TaS2	weathesday	00
				Liquid metal prepared oxide films as dielectrics for	Wednesday	68
838	Mr	Matthew	Gebert	graphene devices	weathesday	08
				Electronic structure of WS2 model devices and the	Tuesday	69
575	Dr	Antonija	Grubisic-cabo	influence the underlying substrate	Tuesuay	05
751	Ms	Garima	Gupta	Fundamental exciton linewidth in monolayer tmds	Wednesday	70
				When graphene meets electrolyte: how does	Tuesday	71
690	Mr	Хіаоуи	Jia	graphene sense proton (h+)?	Tucsuay	/1
				Suppression of magnetic ordering for xxz-type NiPS3 in	Wednesday	72
648	Mr	Kangwon	Kim	2-dimension limit studied by raman spectrascopy	weatesday	72
				Photoluminescence and differential reflectance	Tuesday	73
744	Mr	Pavel	Kolesnichenko	microspectroscopy of tungsten disulphide monolayers	Tuesday	, , , , ,
				Photoluminescence induced oxidation of monolayer	Wednesday	74
721	Mr	Jimmy	Kotsakidis	WS2	weatesday	, ,
				Transport properties of two-dimensional electron gas	Tuesday	75
748	Mr	Yik Kheng	Lee	with rashba and zeeman effects		
				Realization of flat band with possible nontrivial	Wednesday	76
961	Dr	Zhi	Li	topology in electronic kagome lattice		
657	Ms	Soo Yeon	Lim	Anomalous polarized raman response of ReSe2	Tuesday	77
624	Ms	Miaoling	Lin	The raman spectroscopy of twisted bilayer MoS2	Wednesday	78
				Functional 2D boron nitride nanosheets and their	Tuesday	79
650		Weiwei	Liu	applications in energy and environment		
				Air-stable passivation of topological dirac semimetal	Wednesday	80
769	Mr	Chang	Liu	Na3Bi thin films		
				Electrochemically exfoliated black phosphorous	Tuesday	81
844	Mr	Mahendra	Pawar	nanosheets for nanoelectronic device applications	,	
				Energy dispersion and magnetoresistance of graphene	Wednesday	82
675	A/ Prof	Mohammed	Roshanzamir	in the presence of topological defect	•	
		-	<u>.</u>	Anisotropic SnSe(1-x)sx alloys studied by using	Tuesday	83
660	Mr	Tharith	Sriv	polarized raman spectroscopy	•	
704			-	Low-temperature scanning tunnelling microscopy of	Tuesday	87
731	Dr	Wei	Тао	topological semimetals		<u> </u>
747	Mr	Chutian	Wang	Robust topological edge states in 2D tcis on substrates	Wednesday	84
				The phonon confinement effect in two-dimensional	- .	
				nanocrystals of black phosphorus with anisotropic	Tuesday	85
643	Dr	Cong	Xin	phonon dispersions		
				Towards understanding and engineering the		
				properties of perovskites for led and solar cell	Wednesday	86
727	Ms	Tingting	Yin	applications		

Speaker Sponsor

Name Badge and Lanyard Sponsors

Notepad Sponsor

DODD-WALLS CENTRE

ELBOURNE Convention Bureau **Host Organisations**

Satchel Sponsor

Poster Prize Sponsor

WILEY

Supporting Partners

Scitek

/ITec

EZZI VISION

Conference Advert Sponsors

nea see the nanoworld

